

How Modified Atmosphere Packaging (MAP) can reduce fresh crops losses and maintain quality

Prof. Noureddine Benkeblia

FRUITS

VEGETABLES

Estimated postharvest losses of fresh produce

in developed and developing Countries

Product	Developed Countries		Developing Countries	
	Range (%)	Mean (%)	Range (%)	Mean (%)
From production to retail sites	2 – 23	12	5 – 50	22
At retail, foodservice and consumer sites	5 – 30	20	2 – 20	10
Cumulative Total	7 - 53	32	7 - 70	42

THE TYPES OF ATMOSPHERE MANIPULATION INSIDE THE PACKAGE ARE:

1. Controlled Atmosphere Packaging (CAP) 2. Modified Atmosphere Packaging (MAP) 3. Vacuum Packaging

)₂

 H_2O

 C_2H_4

Heat

 \mathcal{O}_{2}

MODIFIED ATMOSPHERE PACKAGING (MAP)

The initial application of an atmosphere other than air with no further control of the atmosphere

APPLICATION

 Quantities of fresh vegetables and fruits are transported under modified atmosphere condition

Initial respiration rate at 15° C

Gas diffusion in and out of a MA package

More Pores → Higher is the Gas Diffusion
Thicker is the film → Lower is the Gas Diffusion

Principles of MAP Preservation

- Reduce Microbiological growths
- Reduce spoilage
- Reduce respiration rate
- Reduce Browing application of heat
- **Condition:** the <u>temperature</u> of storage the <u>lower</u> the <u>better</u>

Storage Life

2 times in room temperature + MAP4 times in refrigerated temperature + MAP

MAP and Shelf-Life Extension of Fresh Crops

MAP and Shelf-Life Extension of Fresh Crops

Recommended conditions of MAP

Product	Temperature (°C)	O ₂ (%)	CO ₂ (%)	N ₂ (%)
Apple	0 – 5	2 – 3	1 – 2	Rest
Broccoli	0 – 5	1 – 2	5 – 7	Rest
Tomato	8 – 12	3 – 5	0	Rest
Banana	12 – 15	2 – 5	2 – 5	Rest

4.5 Months at 5° C + MAP

4.5 Months with normal PE film

Cold storage of Broccoli as affected by modified atmosphere packaging

Cold storage of fresh-cut lettuce as affected by modified atmosphere

Reduce weight loss and shriveling

Internal quality and taste are preserved

a.5 months @ 5°C in Xland

Reduce crown and fruit decay after 4 months storage

Decrease of skin blemishes and create superior marketability

72 days @ 6°C in lass * 4 days @ 20°C without bag

72 days @ 5*C in bag + 4 days @ 27*C without bag Yeh Mon, THANK YOU for keeping me Fresh as Fresh

You good now?